
Jan.23 – 25, 2024
Hanoi, Vietnam

ICGHIT 2025

Deep Learning Blockchain-Based Clustering Protocol to Improve Security and Scalability in FANETs

·· 048p
Yushintia Pramitarini and Ridho Hendra Yoga Perdana (Hongik University, Korea (South)); Kyusung Shim (Hankyong
National University, Korea (South)); Beongku An (Hongik University, Korea (South))

Federated Learning-Based Clustering Protocol Utilizing Cross-Layer Design in IoT-Enabled MANETs

with CF-mMIMO ··· 052p
Amalia Amalia, Yushintia Pramitarini and Ridho Hendra Yoga Perdana (Hongik University, Korea (South)); Kyusung Shim
(Hankyong National University, Korea (South)); Beongku An (Hongik University, Korea (South))

 CI2: Communication & IoT2

Enhancing QoS in Opportunistic Networks Through Direct Communication for Dynamic Routing

Challenges ·· 055p
Ambreen Memom (Canterbury Institute of Management, Australia); Aqsa Iftikhar (Universiti Tunku Abdul Rahm, Malaysia);
Muhammad Nadeem Ali and Byung-Seo Kim (Hongik University, Korea (South))

Sigma-Based RSSI Annular Section and Two-Way Ranging Scheme for Enhanced Positioning

Performance of Trilateration Technique ·· 061p
Chao Sun, Kyongseok Jang, Junhao Zhou, Yongbin Seo and Youngok Kim (Kwangwoon University, Korea (South))

Empowering Metaverse Through Mobile Edge Computing: a Survey on Integrated Computation

Offloading and Data Caching Strategies ·· 066p
Tanmay Baidya and Sangman Moh (Chosun University, Korea (South))

Information-Centric Intelligent and Adaptive Content Rate Control in Metaverse ········· 072p
Muhammad Atif Ur Rehman (Manchester Metropolitan University, United Kingdom (Great Britain)); Byung-Seo Kim
(Hongik University, Korea (South)); Mohammed Al-Khalidi (Manchester Metropolitan University, United Kingdom (Great
Britain)); Rabab Al-Zaidi (University of Salford, United Kingdom (Great Britain))

W1: Workshop – SACS’25 (2)

Secrecy Comparison of Active and Passive RIS ··· 074p
Yosefine Triwidyastuti (Hongik University, Korea (South)); Tri Nhu Do (Polytechnique Montréal, Canada); Kyusung Shim
(Hankyong National University, Korea (South)); Beongku An (Hongik University, Korea (South))

Topic Classification Training Model with Automatic Textual Data Transformation ········ 078p
Jinmo Yang (Hongik University, Korea (South)); Chaeyun Seo (SE Laboratory, Hongik University, Korea (South)); Kidu
Kim (Telecommunications Technology Association, Korea (South)); Janghwan Kim (Hongik University, Korea (South) &
Software Engineering Laboratory, Korea (South)); Robert Youngchul Kim (Hongik University, Korea (South))

ICGHIT 2025

AI Driven Code Generation Mechanism ·· 082p
Yejin Jin (Hongik University, Korea (South)); Chaeyun Seo (SE Laboratory, Hongik University, Korea (South)); Kidu Kim
(Telecommunications Technology Association, Korea (South)); Robert Youngchul Kim (Hongik University, Korea (South))

Value Estimation Model with Learning Book Condition‘s Image Data ···························· 085p
Ryu Donghoon (Hongik University, Korea (South)); So-yoon Park, Seong-eun Kim and Du-hyeon Hwang (Hongik, Korea
(South)); Sanho Lee (RasTech, Korea (South)); JiHoon Kong (Hongik, Korea (South)); Kidu Kim (Telecommunications
Technology Association, Korea (South)); Chaeyun Seo (SE Laboratory, Hongik University, Korea (South)); Robert Youngchul
Kim (Hongik University, Korea (South))

 GT: Green Information Technology

Design of Parallel Control System for Faster DC Current Network Control ··················· 088p
Yuuki Minagawa (Kanagawa Institute of Technology, Japan); Haruhisa Ichikawa and Shinji Yokogawa (The University
of Electro-Communications, Japan); Yoshito Tobe (Aoyama Gakuin University, Japan); Yuusuke Kawakita (Kanagawa
Institute of Technology, Japan)

Electromagnetic Wave-Based Respiratory Sensor System for Real-Time Monitoring and Sleep Apnea

Diagnosis in Home Environments for Elderly Care ·· 091p
Hyungki Min (SB Solutions, Inc., Korea (South)); Seungcheon Kim (Hansung University, Korea (South)); Franklin Bien
(Ulsan National Institute of Science and Technology, Korea (South))

Moving Target TSP Based Path Planning with Deep Learning-Based Perception Sensor for Recure

Robot ·· 094p
Ngoc Nghia Nguyen (ARAR JSC, Vietnam); Anh Vu Le (Communication and Signal Processing Research Group, Vietnam);
Nhat Tan Le (Ton Duc Thang University, Vietnam); Anh Dung Nguyen (ARAR JSC, Vietnam); Dao Nguyen (Ton Duc Thang
University, Vietnam); Minh Do (ARAR JSC, Vietnam)

SmartWater plus – a Big Data and IoT Enabled Water Purification Systems ················· 099p
Phuong T. Tran, Lam Thanh Tu and Pham Van Huy (Ton Duc Thang University, Vietnam); Gi-Chul Yi (Korea Wetland
Conservation Alliance, Korea (South)); Hae Kyung Lee (Korean Environmental Health and Welfare Association (KEHWA),
Korea (South)); Nguyen Van Thai (Ho Chi Minh City University of Technology and Education, Vietnam); Do Kyong Kim
(Korea Wetland Conservation Alliance, Korea (South)); Hyung Nam Kim (LFO, Korea (South)); Nam Chun Han (Yeha
Global, Korea (South))

Driving the Future: Examining the Switching Intention to Sustainable Transport: Insights from

Electric Vehicle Adoption in Indonesia ·· 105p
Sharon Priscillia Wijaya, Natashya Chu and Indra Adiputra (Bina Nusantara University, Indonesia)

A Study on Peer-to-Peer Energy Trading for Secure Dynamic Power Pricing Strategies in Blockchain

Networks ··· 111p
Faiza Qayyum and Syed Shehryar Ali Naqvi (Jeju National University, Korea (South)); Kyutae Lee (Kongju National
University, Korea (South)); DoHyeun Kim (Jeju National University, Korea (South))

AI-Driven Code Generation Mechanism

Yejin Jin *, Chaeyun Seo †, Kidu Kim ‡, R. Young Chul Kim §

*†§ Software Engineering Laboratory, Hongik University, Sejong, Korea

‡ Telecommunications Technology Association, City, Korea

Emails: *yejin_jin@g.hongik.ac.kr, †chaeyun@hongik.ac.kr, ‡kdkim@tta.or.kr, §bob@hongik.ac.kr

Abstract— Recently, generative AI has become a tool in code

generation that allows developers to generate code through

simple queries easily. But it isn’t still clear that the generative

AI tools generate code with input prompts. This means why we

don’t know inside the process of code generation as a “black

box.” As we are software engineers, we raise concerns about the

reliability and verifiability of generated code. There are limited

existing methods for verifying the results of generative AI. We

need a more systematic approach. We propose a step-by-step

approach based on the software development life cycle (SDLC)

to uncover the black box of AI-based code generation. We aim

to increase the understanding and reliability of generative AI in

software development by breaking down the process into

individual steps. We also explore how this approach can be

applied to multiple stages of the development process to make

AI-based code generation more systematic and reliable.

Keywords—LLMs, Natural Language Requirements, Code

Generation, UML Diagram

I. INTRODUCTION

Recently, generative AI technology has been actively
utilized in the field of code generation as well as development.
Many users can easily generate code with simple queries by
utilizing generative AI. However, the specific mechanism by
which generative AI generates results from prompt input is not
revealed, and this process is often expressed as a “black box.”
This black box characteristic raises issues regarding the
reliability and verifiability of the results. Existing methods for
verifying the black box of generative AI are limited, and a
systematic approach is needed to solve this. Based on the flow
of the software development life cycle (SDLC), the method of
performing verification the use of generative AI can track the
step-by-step process of code generation. This will not only
allow a more intuitive understanding of the process of
generating code from prompts but also increase the reliability
of the results by applying existing verification technologies.

We propose a step-by-step approach based on the software
development life cycle (SDLC) to reveal the black box of the
generative AI-based code generation mechanism. We
examine how generative AI can be utilized in the software
development stage, and propose methods applied to code
generation using generative AI at each stage. Through this, we
aim to provide a foundation for designing the utilization of
generative AI more systematically and reliably, thereby
increasing the convenience of code generation. In Chapter 2,
this paper discusses related research and existing code
generation methods, and in Chapter 3, we propose a generative
AI code generation mechanism based on a step-by-step
approach. Finally, in Chapter 4, we discuss the conclusions
and limitations of the study, and suggest future research
directions.

II. RELATED WORKS

A. 3D Object Extraction from Natural Language

 AI has also been introduced into the 3D modeling field,
and Text to 3D technology has emerged. Text to 3D AI can
quickly generate 3D through natural language without
complex modeling technology. However, generative AI has
difficulty in ensuring consistency and quality of results. This
previous study proposes a mechanism for generating 3D
objects from unstructured requirements in the cartoon field
from a software perspective[1]. It effectively analyzes the
meaning of natural language requirements by integrating
requirements engineering and linguistics theory. Figure 1
shows the process of this study.

Fig. 1. 3D Object Extraction Process from Natural Language

We intend to apply software development with the step-
by-step mechanism

B. Code Generation Research

Several approaches have been explored to automate and
streamline the code development process. The three main
approaches to generating code are based on the Software
Development Life Cycle (SDLC), automated code generation
tools, and generative AI technologies. Each approach has the
following characteristics:

1) SDLC-based Code Generation

The Software Development Life Cycle (SDLC) is a
structured methodology that divides the software development
life cycle into various phases, including requirements analysis,
design, implementation, testing, deployment, and
maintenance[2]. This method follows a step-by-step approach,
so each phase is addressed systematically. One of the main

ICGHIT 2025
- 82 -

advantages of SDLC-based code generation is the structured
approach that ensures thorough development at each phase.
This method allows for clear traceability, transparency, and
accountability, allowing verification of the entire process.
SDLC also facilitates detailed documentation and verification
procedures that improve the reliability of the generated code.
However, this method has limitations in that the process
requires significant human intervention at each step, which is
time-consuming.

2) Automated Code Generation Tools

Automated code generation tools can significantly reduce
the amount of manual work required to write code for
common or repetitive tasks[3]. They help improve
development speed and maintain consistency in code structure
when using predefined templates. However, while these tools
can increase productivity, they often struggle to handle
complex tasks because they rely on predefined templates or
rules. Additionally, the generated code may not be optimal in
some cases.

3) Generative AI for Code Generation

The rise of generative AI technologies, such as OpenAI’s
GPT model, has introduced a new approach to code generation.
Generative AI can quickly generate code from simple user
input in the form of prompts, using natural language
processing (NLP), saving significant time and effort[4]. It can
also generate code in multiple programming languages,
increasing flexibility and usability. However, generative AI
for code generation also has some notable limitations. AI-
generated code can be difficult to understand for what it was
generated, making debugging and maintenance more difficult.
Furthermore, generative AI tools can sometimes generate
incomplete or buggy code, requiring manual intervention to
fix errors.

We use SDLC and generative AI technology-based
approaches to complement each other’s limitations and
suggest ways to maximize their strengths.

III. GENERATING CODE FROM NATURAL LANGUAGE

We propose a mechanism that applies the GPT API and
generates code from natural language requirements through a
step-by-step process. UML design is generated through
natural language requirement analysis, and code is generated
from UML design using metamodeling techniques. Figure 2
shows the mechanism for the process of systematically
analyzing natural language.

Fig. 2. Natural Language Analysis Procedure

A. Natural Language Requirements Analysis

To analyze natural language requirements, we go through

three steps. First, we preprocess natural language sentences to

make them easy to analyze. Next, we apply Chomsky’s theory

for grammatical analysis. Then, we apply Fillmore’s linguistic

theory for semantic analysis and provide the analysis results

in JSON format. Although we cannot directly access the

underlying model, we can automate the process through

prompting. We use the Lang-chain technique with the goal of

optimal natural language analysis. We illustrate our

mechanism with a simple door lock system as an example, as

shown below[5].

R1: The members can open the door through the door

lock device.

R2: When the door is closed, the door lock device is locked.

...

R7: The unlock function can be unlocked using a

password, IC card, or iris.

R8: When the user goes to the door, it must recognize the

iris information of the user and unlock it.

The preprocessing process is performed to transform them

into simple sentences. In this process, any missing subjects are

replaced with the subjects of existing sentences, and pronouns

are substituted with nouns that represent them. R8 is made up

of both compound and complex sentences. If the R8

requirement is preprocessed according to this procedure, it is

divided into three sentences as follows.

R8-1: The user goes to the door.

R8-2: The door must recognize the iris information of the

user.

R8-3: The door must unlock the door.

B. Morphological-based requirements analysis

We perform grammatical analysis on the preprocessed
requirement sentences. We analyze morphemes based on
Chomsky's Syntactic Structural Analysis theory[6]. For this,
we use Stanford Parser, which can identify the structure of
sentences based on Chomsky's theory. It can distinguish the
main verb, related nouns, and adjectives of the sentence.
Requirement R8-1 'The user goes to the door.' is parsed by
Stanford parser as 'The(DT) user(NN) goes(VBZ) to(IN)
the(DT) door(NN).' We treat parts of speech starting with NN
as nouns and parts of speech starting with VB as verbs.

C. Semantic-based requirements analysis

Based on the analyzed morphemes, we use Fillmore's
Semantic Roles theory to understand the meaning of
sentences[7]. The theory assigns roles to nouns based on the
main verb. Fillmore's theory has been studied and evolved by
many linguists. We redefine it to be suitable for UML
generation as shown in Table 1.

Table 1. Redefined Fillmore’s Semantic Roles for UML

Roles Definition

Actor The entity that is the main subject of the event.

Element The entity that indicates a property of the actor

Object The entity affected by the event.

ICGHIT 2025
- 83 -

Source The entity performing the action.

Target The entity receiving the action.

Instrument The tool used to perform the action.

If we analyze requirement sentences with the redefinition

of roles as shown in Table 1, it is as follows:

R8-1: The user(Actor, Source) goes(Verb) to the

door(Target).

R8-2: The door(Actor) must recognize(Verb) the iris

information(Instrument) of the user(Object).

R8-3: The door(Actor) must unlock(Verb) the

door(Object).

Fig. 3. Generating UML Diagram

A use case diagram is completed through cases analyzed
from natural language [8]. Based on the use case, the results
of natural language analysis and UML diagram elements are
mapped to create a class diagram, sequence diagram, and state
diagram.

D. Generating Code Template

Metamodeling is used to generate code based on the
generated UML diagram. The items in the metamodel are
mapped to each element of the class diagram, sequence
diagram, and state diagram. As shown in Figure 4, a
metamodel is generated for the elements of the diagram and
the elements required for development, so that code can be
generated through transformation rules.

Fig. 4. Generating Code from UML Diagram

The diagram and code generated as natural language
requirements are mapped, so that code that reflects the
requirements is ultimately generated.

IV. CONCLUSION

In conclusion, We propose a step-by-step approach for
understanding the black box of generative AI-based code
generation mechanisms using an SDLC-based approach. By
utilizing this approach, generative AI can be more effectively
integrated into software development processes. This will
bridge the gap between prompts and generated code, and
further lay the groundwork for enhancing the reliability of
generative AI in software engineering. However, while simple
examples can be addressed, applying this method to complex
scenarios still has limitations, necessitating further research.
Future studies could expand this approach to more
complicated scenarios and explore additional methods to
improve the interpretability of generative AI systems.

ACKNOWLEDGMENT

This research was supported by Korea Creative Content
Agency (KOCCA) grant funded by the Ministry of Culture,
Sports and Tourism (MCST) in 2024 (Project Name: Artificial
Intelligence-based User Interactive Storytelling 3D Scene
Authoring Technology Development, Project Number: RS-
2023-0022791730782087050201) and National Research
Foundation (NRF), Korea, under project BK21 Four.

REFERENCES

[1] Y.J. Jin, C.Y. Seo, J.H. Kong and R.Y.C. Kim. (2024). 3D Object State
Extraction Through Adjective Analysis from Informal Requirements
Specs. KIPS Transactions on Software and Data Engineering, vol. 13,
no. 10, pp. 529-536. https://doi.org/10.3745/TKIPS.2024.13.10.529.

[2] N. B. Ruparelia. (2010). Software development lifecycle models. ACM
SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 8-13.
https://doi.org/10.1145/1764810.1764814.

[3] J. Shin, J. Nam (2021). A survey of automatic code generation from
natural language. Journal of Information Processing Systems, vol. 17,
no. 3, pp. 537-555. https://doi.org/10.3745/JIPS.04.0216

[4] B. Idrisov, T. Schlippe (2024). Program Code Generation with
Generative AIs. Algorithms, vol. 17, no. 2, pp. 62.
https://doi.org/10.3390/a17020062.

[5] C.Y. Seo, J.H. Kim, R.Y.C. Kim. (2021). Applied Practices on
Codification Through Mapping Design Thinking Mechanism with
Software Development Process, KIPS Transactions on Computer and
Communication Systems. Vol.10, No.4, pp.107-116.
https://doi.org/10.3745/KTCCS.2021.10.4.107.

[6] N. Chomsky, Syntactic structures, USA: Mouton de Gruyter, 2002.

[7] C.J. Fillmore. The Case for Case. Universals in Linguistic Theory, ed.
by Emmon Bach and Robert T. Harms, 1-90. Holt, Rinehart & Winston:
New York, 1968.

[8] B.K. Park and R.Y.C Kim. (2020). Effort estimation approach through
extracting use cases via informal requirement specifications. Applied
Sciences vol. 10, no. 9: 3044. https://doi.org/10.3390/app10093044.

ICGHIT 2025
- 84 -

	019_1571099748

